

2018

NEA

Contents
Analysis ... 2

Problem ... 2

Methods and sources .. 2

Identifying a third party .. 2

Research .. 3

Prototyping and critical path .. 4

Program requirements: ... 4

Documented Design .. 5

Sequencing .. 5

Documented design .. 6

Technical Solution ... 8

Guide ... 8

Libraries used .. 10

Libraries used in development .. 12

Data structures .. 12

File structure and organisation ... 13

Tests .. 14

Evaluation ... 20

Analysis
Problem

Statement that describes the problem and solution

The result of not mixing/equalising the sound played through speakers can have mainly 2 effects:
have the sound/music being projected sound strange or off; which when loud and with higher
frequencies amplified can cause ear damage, and having feedback loops which when loud can also
cause ear damage at certain but common frequencies.

I plan to design and make a program that plays a sound through the user’s pa systems or speakers,
records the feedback from the sound played through the speakers, then finally inform the user
about the sound that is being played and how they can adjust it.

Methods and sources
How the problem was researched

Who the problem was being solved for

In my previous school, I and a handful or peers along with a couple of teachers ran the entire
school’s pa; including drama performances, masses, plays, or any performances. As a result, we
would have to do the mixing as almost all of the DJ’s, weather student/teachers/others as they
usually wouldn’t know how to properly and quickly balance their sound for music and when using
the microphone. I also found this problem occurring with DJ’s that were hired for events in and out
of the school, and also currently in the normal pa used for assemblies.

I am trying to help the people under control of the sound with the equalising as to solve the problem
for the people that have to listen to the sound.

I will try to target the program towards people with little knowledge on PA and speaker systems as
they are the type of people to most likely have this problem. This means giving explanations on the
their sound in layman’s terms, and giving the program default settings to be able to run with little
input from the user, unless desired by the user.

Identifying a third party
Detail for a third party to understand

My third part will be the other pupils that usually play the music at socials as they are able to give
me feedback on the software when testing the pa systems before an event.

I would have them playback their sound and use the mic with a flat equaliser on the
mixer/computer, let them run the program, equalise the sound based on what the program outputs,
and play back their sound from their input and microphone, then get feedback on how useful or not
the program was and how easy or difficult the program is to run and/or understand.

Research

The reason that certain frequencies at the same
volume can cause ear damage

When playing a sound, there are certain frequencies
that the person playing the sound mostly looks out
for.

I’ve notices that in mostly hip hop/rap/electronic
music, people generally look out for the low ends that
give the kick of the bass that they enjoy.

What they don’t realise is that when they want more
low end, instead of equalising the sound to have more
low end, they opt out to increase the volume
altogether.

This in turn brings up some of the higher frequencies
that is easier replicated by speakers and are more
sensitive to the ear (due to ears not having a neutral
frequency response (tends to be more 500-6khz),
peaking at around 4khz as we can see in the image to
the right).

The result of this is really loud, often painful treble
that is usually dampened to the person playing the audio
due to them usually being behind or to the sides of the
speaker and not using monitors to truly listen to what
there are outputting.

The reason that feedback loops occur
A Feedback loop occurs when a microphone that is being played back through a speaker in real time
starts picking up its own recording from the speaker, sending it right back to itself many times per
second which amplify itself and can drown out all the other frequencies and won’t stop until the
microphone’s output/input are decreased or until the certain frequency that is looping is cut back a
bit. As the frequency loop can amplify itself, it could get very loud and potentially damage the ears
of people listening, especially for frequencies above 2000 Hz.

1This is a demonstration I made using headphones, and a sensitive mic with the ‘listen to this device’
option activated in Windows’ microphone properties. To identify the frequencies in real time I used
a program called ‘Friture’.

With my microphone and headset frequency response and the (almost, mostly dominant on 43 hz)
white noise made by a desktop fan, I got 2 dominant feedback loops of around 4 kHz and 6 kHz

1 [Please refer to the video titled ’demonstration’]

[Image above showing how the human’s ear
filters out certain frequencies. The lower the
band of frequency, the less we filter out the
frequency, the louder it is]

Prototyping and critical path
-List of measurable, specific objectives, covering all required functionality of the solution

-Model of the problem that informs the design stage.

Program requirements:
Must:
- Record audio

- play audio of a given frequency

- analyse audio

- Display a graph of the audio that the user can read and understand

- Be self-explanatory to use.

- Give an explanation of how the can equalise their sound

- On the default run, take no more than 30 seconds from the time the program starts to the time the
graph is built up and shown on the user interface

Should:
- When played through a PA system with a mic inline, or when the mic’s output is being played back
real time, point out a dominant frequency and be able to suggest if it is going through a feedback
loop.

- explain to the user what to do to get rid of the feedback loop depending on their setup.

- adjust the graph’s output to the sound response of a human’s ear.

-be able to save the user’s settings

Could have:
- An optional safety feature which reads the amplitude of the recording in real time and based off of
that, when the output of the sound is over some threshold, interrupt the playback as to protect the
user.

- The ability to display the user’s microphone input in real time for the user to know if the mic is
connected properly or not.

- The option to change the mic’s input from the default input

- The graph adjust itself to the sound response of the microphone

Documented Design
Sequencing

Initial Data Flow Diagram

Initial High level overview

Type of
data

Reason

Vector
graphs

To show the analysis of the
audio

Lists For the set of frequencies
the program will run

Text To give the user and
information before/after the
main program has run

WAV For any of the sound files as
they are an easy format to
work with.

PNG For any extra charts to use
in the explanation of the
user before and/or after the
main program has run

Potential Data types to use

Documented design
In this project, I use the rapid prototyping method and constantly develop the program, making
changes in each iteration. I do this to make sure that I don’t get carried away doing parts of the
program and can set myself achievable milestones that so I can stay on track of my time. Also, so
that I get a very strong understanding of how the program and modules works and will work. This
might also result in a more stable program overall as I can constantly add improvements in methods
to make new things work, and also to optimise some of the processes within the program to make it
run more efficiently.

2nd iteration 3rd iteration

4th iteration 5th iteration 6th iteration

7th iteration 8th iteration 9th iteration

1st iteration 2nd iteration

Final high level overview

11th iteration 10th iteration 12th iteration

Technical Solution

Guide
Line 1-7: Import of the modules that I use within the program. The imported libraries are further
explained along the document.

Line 9: Initialised the default_frequency_list which is used as the default frequency list of the
program and contains the same frequencies as the windows equaliser settings.

Line 10: Initialised the sample_rate to be 48000 as it is very commonly used with digital audio and
follows the Nyquist theorem. It lets me sample from 0-22kHz and I doubt would have any problems
with consumer most audio equipment.

Lines 11-12: Used the value of the sample rate to set the default sample rate for the sounddevice
library and also to be the num_samples (number of samples) as I would only want to play and record
1 second of audio per frequency played.

Line 13: Set the default channel for the sounddevice library to 1 channel for less overall memory use
and processing as the program wouldn’t have to deal with multi-channel audio.

Lines 14 - 16: Initialised the Tkinter module to be called root, and initialised the user’s inputs in the
user interface to later be passed on by the user. These inputs are an integer which has a range of 0
to 1 which acts as a Boolean when a checkbox is used and the other input is input consists of
characters which is how data is captured when the user writes their frequency list.

Lines 19 - 107: A class named ‘UI’ is created and initialised. These lines are almost completely
dependent of the Tkinter library as it allows me to create the look and function of the user interface.
The user interface is made by a main frame that sits within the root frame and is broken up into 3
sub frames which are the: top frame, mid frame and the bottom frame. Each sub frame is then
further divided into their own frames such as the input frame, start frame, log frame etc. which
contain their own labels and widgets which make the look and function of the user interface. The UI
contains a 3 step instruction to assist the user in correctly using the program, A checkbox for
allowing the user to play their own frequencies, an input box where the user can write in their own
frequencies, a small explanation that states the default frequencies, a log box that shows the user
what is happening and finally, a start button to run the main sequence. I also added a title to the
user interface, a set size of 720x325pixels when the user interface pops up and the ability to resize
the user interface from a maximum size of 800x400 pixels to a minimum size of 550x300 pixels.

Lines 113 - 117: There is a function print_to_gui which captures all of the print statements from the
program and inserts the statements into the log text box within the user interface. The function also
makes the scrolls the scrollbar to reveal the bottom of the log box after each print statement.

Lines 119 - 127: There are two functions named ‘input_box_on_hover()’ and
‘input_box_off_hover()’. The function ‘input_box_on_hover()’ function is called when the courser
hovers over the input box where the user inputs their custom frequency. When the
‘input_box_on_hover()’ is called, it replaces the text above the input box to have a small message
that informs the user about the different spectrum of frequencies and a small examples of where
the frequency may be present in music. This is there to help out the user in making their custom list
of frequencies to test out. Once the user removes their mouse from the text box,
‘input_box_off_hover()’ is called and the text in the box reverts back to its original text

Lines 129 - 144: There is the function ‘check_validity_of_user_frequency_list()’ which is a point
where the user’s input frequency list can be checked to make sure it does not contain any letters
and to make sure that the list is not empty when the checkbox to use the custom frequencies is
ticked. A Boolean variable ‘list_is_valid’ is initiated and equals to False. There is an ‘if’ statement that
uses regex to make sure the user’s list contain no letters and there is an ‘elif’ statement that makes
sure the user’s list is not empty. If the user’s list contains letters or is empty, the function returns
‘False’. If the list has made it past these checks, the function returns ‘True’

Lines 146 - 152: The is the function ‘start_button()’ which has an ‘if’ statement that calls the function
‘check_validity_of_user_frequency_list’ and is ‘True’ is returned, the frequency analysing portion of
the program starts. Else, if the ‘check_validity_of_user_frequency_list()’ returns anything but ‘True’,
the function is passed and the user is left with the warning messages from the
‘check_validity_of_user_frequency_list’ function.

Lines 155 - 158: The class called ‘Mainclass’ is made and when called, passes and returns nothing.
The functions in this class are static and the reason for the class being there is more for organisation
rather than any practical application.

Line 160 - 177: There is the function ‘make_user_frequency_list()’ which gets the user’s input list as
text from the user interface and converts it to a list of integers. Firstly, the function split’s the user’s
text into a list of text separated by a comma and initialises ‘correct_user_list’ to equal ‘True’. Then
the function starts a ‘for’ loop which tries to convert each variable in the list from text to integer
form and if its attempt fails, It gets a value error and displays a prompt to the user which asks them
to only use certain characters in their list and then sets ‘correct_user_list’ to equal ‘False’. If the
‘correct_user_list’ still equals to ‘True’, the user’s frequency list is returned, if the ‘correct_user_list’
is equal to anything but ‘True’, the user’s frequency list is given the frequency of 1hz and is returned.

Lines 179 - 188: There is a function ‘’determine_frequency_list()’ which uses ‘if’ statements to return
the list of frequencies the user is going to be using in their run. If the checkbox is not checked, the
frequency list returned is the default list and if not, the function ‘make_user_frequency_list()’ is
called to make the user’s frequency list.

Lines 190 - 193: There is a function ‘produce_sinewave()’ that for a given frequency needed , sample
rate and sample size, returns a sine wave. I used numpy’s sin function to make the sine waves.

Lines 195 – 200: There is a function ’play_audio_and_record_audio()’ which uses the a function in
the sounddevice library ‘ds.playrec()’ that is able to record audio whilst playing audio. I use this to
play the required frequency whilst recording the audio from the microphone in int32 form (which
gave me the least amount of problems processing). I also use a sounddevice function ‘sd.wait()’
which gives a brief pause to other operations before moving onto other frequencies as they might
interfere with each other. The function then returns recorded audio.

Lines 202 – 210: There is a function called ‘process_input_audio()’ which gets raw audio data,
unpacks the data, arrays the data, carries out the fast Fourier transform (fft) onto the data, gets the
absolute values for the data, converts the data to an n-dimensional fft so I can then divide the data
by 1.0*10^6 to make the data legible and then finally, apply the inverse function of the n-
dimensional fft data and return the processed data as ‘smoothed audio data’. In other words, I
convert the audio data into a form where I can apply functions to the data that make the data
readable on a graph. I then smooth out the data and return that data. I use the struck library to
unpack the audio data, and then used Numpy to find absolute values of the data and then convert
the data into the fft and rfft and back to fft form.

Lines 112 – 223: There is a function called ‘plot_fft_graph()’ which has the processed audio as an
input and constructs a graph around that data. The graph is plotted with both the x and y axis
logarithmically scaling as amplitude is logarithmic and to compress the 0-20kHz band of frequencies
comfortably in a graph. The function uses Numpy’s ‘np.argmax’ function to find the maximum
frequencies recorded during the playtime of a specified frequency and displays it to the user in order
to find any feedback or noise during the session. For each frequency, only a range of frequencies of
[input frequency + or – input frequency/10] is plotted. This range is made from
‘min_plot_for_frequency’ and the ’max_plot_for_frequency’ as to make the graph far less messy
when plot. I use matplotlib pyplot functions to plot the data in the range of the minimum and
maximum and then place a colour coded label for each frequency on the top of the graph and lables
for the amplitude and frequency.

Lines 225 – 231: There is a function called ‘display_graph()’ which sets the range of the viewable
graph on the x axis based off of the list of frequencies played which shows the highest and lowest
frequency played on the same graph. The function then displays the graph to the user via a pop up
matplotlib window.

Lines 233 -255: There is a function called ‘start_analysing()’ which is called when the start button is
pressed on the user interface and is used to call all of the functions necessary to start the process of
the audio analysing. Firstly, the ‘determine_frequency_list()’ function is called to make the list of
frequencies to be played. Then, in a for loop tried for each frequency: the sinewave is produced
using ‘produce_sinewave()’, the user interface is then updated to show the progress of the program
using ‘root.update_idletasks()’, the audio is played and recording is recoded using the function
‘play_audio_and_record_microphone()’, the recorded audio data is then processed using the
function ‘process_audio_data()’ and the processed audio is then plotted using the function
‘plot_fft_data’. There is an exception to an ‘sd.PortAudioError’ which occurs when a microphone is
not properly plugged into the computer. This exception prompts the user to plug in their
microphone and restart the program. The other exception is there for a ‘ValueError’ which occurs
when an improper list is made by the user that gets through the exception handling in the
‘check_validity_of_user_frequency_list()’ function. When the ‘ValueError’ occurs, the user is
prompted to correct their list, using only numbers followed by a comma. At the end of the
‘start_analysing()’ function, the graph is displayed to the user using the ‘display_graph()’ function.

Lines 258 -261: The ‘UI’ class is called and put into a loop in order to display the user interface. I am
not sure how or why Tkinter works like this but to keep the user interface in a loop, I was advised to
use this method in the Tkinter tutorials.

Libraries used
Sound device

-Sound device provided a function to play audio whilst recording at the same time in
different file types such as int16/32, float (sd.playrec). Also, Sound device is able to record
the audio at different sample rates and channels. This helped me as I could reduce the
amount of data I would need to collect and thus save time for the convenience of the user. I
managed to save time by setting the default sample rate to 48000 samples/second and
channel to mono. I chose to keep the sample rate at 48000 samples/second as it is
commonly used, follows the Nyquist theorem and I probably wouldn’t need to increase the
sample rate because
of aliasing problems.

recorded_audio = sd.playrec(input_audio, sample_rate, channels=1,
 dtype='int32')

Numpy
-I used Numpy for its function to apply the fast Fourier transform algorithm (np.fft()) to
change the input audio signal into its frequency components. The fast Fourier transform
Algorithm is perfect for my program as it only has the time complexity of O(nlog(n)) where n
is the size of my data. I have not attempted using other algorithms as the fast Fourier
transform is a convenient function in Numpy

I used Numpy for the function to find the absolute values for the data (np.abs()); for the so
that I in a way separate the amplitude from my data to be able to plot the amplitude in the Y
axis.

I then used Numpy for the inverse of the fast Fourier transform data function (np.fft.rfft())
and (np.fft.irfft()) which basically smoothens out the data which helps with the plotting.

I also used Numpy to find the maximum values for the processed audio data to then show
the user if there is any feedback or if there is too much noise using the (np.argmax())
function

Lastly, I used Numpy to create a sine wave for a given sample rate and frequency that I
would like to generate using the (np.sin())

[Graph with no smoothing] [Graph with smoothing]

Matplotlib.pyplot
-used for its data plotting and vector graph functions (plt. [plot, title, xlim] etc.), also for its
ability to save graphs as images that are simple to display on the user interface

Tkinter
-used for its many function to make and display
an interactive user interface. It could also
provide the user with progress during the
program’s main sequence by updating the
interface in-between tasks, giving the user
information about the loudest frequency when a certain frequency was played to find
feedback loops.

root.update_idletasks()

Def print_to_gui(printed_statements):
 self.logtext_box.insert(INSERT,
 printed_statements)

audio_data = np.array(audio_data)
audio_data_fft = np.fft.fft(audio_data)
audio_data_absolute = np.abs(audio_data_fft)
audio_data_rfft = np.fft.rfft(audio_data_absolute)/1000000
smoothed_audio_data = np.fft.irfft(audio_data_rfft)

np.argmax(audio_data)

produced_sinewave = [np.sin(2 * np.pi * frequency * x / sample_rate) for x
in range(sample_rate)]

Struct
-used for its function (struct.unpack) for string to be opened as a packed binary data format
to then be read as an array.

 Libraries used in development
Threading

I had a few attempts at threading as it would allow for the library that I use to run my UI
(tkinter) to stop becoming unresponsive and get Window's unresponsive program message.
Also so that the UI updates the Log text box so that the user is able to see the progress of
the program as the program is run.

My idea was to open tkinter on
one thread and have the main
sequence that analyses frequencies
start on a separate thread. I
eventually ended my attempts as
tkinter is not thread safe and my
program was starting to get very
complicated in design as I
continued to make the program threaded.

Perhaps If I planned on making the program threaded earlier in the lifecycle, I would have been able
to implement it.

To solve my problem, I ended up using a tkinter's (update_idletasks) that temporarily pauses my
frequency analyser sequence before moving onto the next task for just enough time to update the
tkinter interface

These libraries further down were critical at one point when my audio data and picture data was
written to the computer’s hard drive rather than memory.

Wave
 -used for its function (wave.open) to read .wav files as frames

Os
-used for its function (os.remove) to delete files from a drive to clean up any files left from
the program.

Scipy.io
-used for its function (wav.write) to write data as an audio file (.wav) and save it onto the
user’s compute

Data structures
The only data structures I hold in memory are lists that hold integer values from the default
frequency list and from the user’s frequency list

plot_fft_graph_thread=threading.Thread(target

=Mainclass.plot_fft_graph(self,

input_frequency=frequency_list[i],

audio_data=audio_data_frames))

plot_fft_graph_thread.start()

File structure and organisation
Initially, Wav files were written to the same path of where the program is stored and were deleted
after each session. This took up more processing power and could be bottlenecked by the disk speed
but was easy to implement. There was a naming scheme for each consecutive Wav file for a given
frequency which was ‘sinewave at (frequency)hz.wav’. After I was able to write the audio data to
memory, I did not have to make a list of all the recordings as I did not need to save the audio data
for reading and writing

Also, initially, to display the graphs I planned on only saving the matplotlib graphs and displaying the
image to the User after the frequencies are plotted. File names for the graphs would simply be
‘graph(test number).png’. This method would re-write graphs with the same name as each graph did
not have a unique name. Saving the graphs as an image and displaying the image would give me the
potential to edit the images which might have had its advantages but I changed to just displaying the
graphs to that the user would have more control with the graph as matplotlib has several features
that can even let you save your own graph with its own name

I tried to design the User
interface to be as simple as
possible to make it as user
friendly as possible. To do
this, I had several different
iterations of the User
interface and got regular
feedback from my client
about colours, log text, sizes
icon placement and potential
helpful features that would
help the user.

The start button was made
big and light blue/purple for
the convenience and ease of
the end user. This start
button, without any other
parameters filled, starts the
main sequence using default
values to be used. Also, the
graph adjusts itself to the
frequencies plotted to
abstract unused data after a
run, are all labelled and each
signal has its own colour.

Tests

Explanation of some of the tests I ran
For parts of the program such as the analysis of the frequencies, I did a lot of my testing whilst
writing the program as I wanted to make sure it worked as well as I could get it to work at the time
to at least some level of usability before moving on. This is it’s the focal point of the program and the
program at the very least had to be able to do it.

To test that I was playing the correct frequencies, I used a program called ‘Friture’ which I also used
to make feedback loops as Friture would allow me to play specific frequencies which I could then
compare to the frequencies I was playing to the user. I plotted the frequency axis (x axis)
logarithmically against the y axis linearly

After looking at their spectrogram, I could conclude that my the frequencies I was producing were
correct for the sample rate

To test if my program was able to show feedback loops, I also re-created my initial feedback loop
demonstration whilst gathering data and plotted the x axis (frequency) and the y axis (amplitude)
logarithmically and I got a graph that is:

The graph strongly suggests a feedback
loop occurring at around the 4 kHz range and which continues playing when 8 kHz and 16 kHz is
played. This is shown by the mic picking up a 4 kHz signal when it is playing 8 kHz and 16kHs from
the extra yellow and blue lines directly under the 4 kHz signal grey line

I also ran a few tests to see whether or not changing my sound source (in this case my headphones)
Equaliser would influence the amplitude of the frequencies picked up by the microphone. The
headphone I used were again the Audio-Technica ATH-M30x as they provide a reasonably flat sound
response which would make the comparison of the amplitude of different sounds a bit easier and for
the mic, I used a Tonor condenser Microphone as it was the only microphone I had available that I
think wouldn’t clip, distort and affect the data as long as the volume was reasonably low. I also
played the same default set of frequencies for each test.

The tests against the requirements that I was able to test.
Must:

 Record audio
o Test

 Use units in program to recorded and write a 1 second audio file which I clap
(to make sure it picked out the correct sounds) into storage.

o Expected results
 A .wav file of written to where the program is saved locally with expected

noise that I made when recording the audio.
o Given result

 A 1 second .wav file was saved in the python file’s location which contains
audio data of the clap I made whilst recording.

 play audio of a given frequency
o Test

 I would use my program to produce a sinewave of different given
frequencies and play them. Then, using a software called ‘Friture’, in real
time display the spectrogram of frequencies played, Frequencies = [31, 62,
125, 250, 500, 1000, 2000, 4000, 8000, 16000]

o Expected results
 The spectrogram to display dark lines spanning 1 second each the same

frequencies I intended to play.
o Given result

 The spectrogram showed 9 clear lines of varying intensity and also
harmonics of the frequencies usually above their respective frequencies.
The first 31 HZ frequency is drowned out by other noise at the 10-40 HZ
range which could be due to my microphone or, more likely from the low
frequency hum when my computer’s fans when they spin at idle
temperatures (~30o). Intense vertical lines can also be seen on the ends of
the frequencies played. This is due to a pop that plays before and after the
frequency is played. This should not be a problem though as audio data is
only captured during the playing time of the frequencies.

 analyse audio
o Test

 Use my program to plot a matplotlib graph with the given audio data from
the recording made within the program. The same audio used was the
confirmed correct audio played in my previous test with the same
frequencies and same conditions.

o Expected results
 A graph of amplitude against frequncies of the recordings made

o Given result
 A graph of amplitude against frequencies of the recordings

 Display a graph of the audio that the user can read and understand
o Test

 Let my client run the program and assess how the graph looks
o Expected results

 My client to have some sort of understanding as to the amplitude of the
frequencies.

o Given result
 My client did understand which frequency was which using the labels and

how loud they were.
 Be self-explanatory to use

o Test
 Let my client open and operate the program to play default frequencies and

also their own frequencies.
o Expected results

 The client to be able to play the default frequencies and their own
frequencies.

o Given result
 My client was able to play the default frequencies but did have difficulties

using the input frequencies with problems such as forgetting to tick the box
which runs the costume frequencies. Also My client only clicked on hovered
over the input box for a sort amount of time before typing the input list
meaning that they did not notice the text displaying information about
different frequencies until I explained.

 Give an explanation of how the can equalise their sound
o Test

 Let my client use the program and ask if they had an idea of how to then
equalise their sound directly from the computer

o Expected results
 My client would have a third party application they use to equalise the

output sound of their computer or at least use Window’s equaliser settings.
o Given result

 My client did not know how to equalise their sound and did not feel that
they would be confident equalising their sound with my brief explanation
given by the user interface.

 On the default run, take no more than 30 seconds from the time the program starts to the
time the graph is built up and shown on the user interface

o Test
 Start the default set of frequencies and time from when the start button is

pressed to when the graph is displayed. I used AMD’s a screen capture
software to do the timing

o Expected results
 The sequence to take around 20 second to accomplish the 8 different

frequencies played
o Given result

 The sequence only took 12 seconds to play, record, analyse, and display the
graph in 12 seconds

Should:
 When played through a PA system with a mic inline, or when the mic’s output is being

played back real time, point out a dominant frequency and be able to suggest if it is going
through a feedback loop.

o Test
 Use Window’s audio settings to listen to the mic. This setting played back

the microphones input sound through the speakers. I forced a feedback loop
my keeping my microphone close to the source of audio and with high gain.

o Expected results
 The microphone to have a feedback loop starting at the 1000Hz to the

16000Hz range and to be seen by frequencies being carried on and showing
in runs of other frequencies. In the graph, this might look like a certain
frequency might have lines of different colour overlap at high amplitudes.

o Given result
 Some frequencies such as 125Hz and 250Hz had high amplitudes due to

them having a feedback loop within their own playing
time but did not carry over between other tests. As
for the 4000Hz test, I found that the amplitude was
very large and that it carried on even after playing the
8000Hz and the 16000Hz part of the test as seen by
their yellow and blue colours under the main grey
4000Hz test. My program is only able to tell the
highest played frequency for a given frequency which
did not help much when finding the Feedback loops.

I also Ran a few tests to find if my program would handle playing 100 different frequencies without
problems to test the robustness of the system. I made a list of 100 different frequencies ranging
from 20 Hz to the 19000 Hz range. During the test, I also timed the runs using the same method of
recording my screen to find the average processing time per frequency played to test the efficiency
of my methods.

This is what the result of the 100 tests looks like:

The test took a total of 136 second to run on my machine which meant that there was only 36 extra
seconds outside of the playing and recording of processing time. The program took a maximum of
250 MB of RAM during the process and there were no problems except for Tkinter hanging up half
the way through and it stopped displaying the log box until the process ended.

I then ran my program on a Virtual Machine that I configured using Oracle’s VM VirtualBox software
running a clean installation of Windows 10 64 bit and gave the system 2 gigabytes of ram clocked at
1866Mhz and running dual channel, and a single 3.5GHz core with no turboboost from the same
AMD fx 6300 processor I used for the tests for the Client. The program worked well except for when
random Windows tasks using up all of the CPU which gave a low cracking noise instead of pausing.

I then ran the program again with the 100 separate frequencies in the virtual machine to see how
much the lack of another core to handle the operating system takes a toll on the program runtime.

This was the graph that ended up being made:

The program took a total of 145 seconds to fully run with the same frequencies used which means
that the total processing time was 45 seconds which is 25% slower than the with multiple cores but I
would say is still usable.

Eq test: I also ran a few tests to show how much Window’s equaliser settings affect the amplitude of
their corresponding frequency. I made 2 tests. One shows the amplitude logarithmically which is
closer to how sound is perceived to humans and in the other column, I show the same test with
amplitude being linear to excaudate the amplitudes so changes can be seen much easier.

Equaliser Configuration Graph plotted with amplitude
logarithmic

Graph with graph plotted in a
linear way

I am able to see how the Window’s equaliser is able to affect the amplitudes of the corresponding
frequencies plotted on the graph. Although, I do see that the amplitudes do not change drastically as
the change is somewhere within the realm of +- 5 to 10 decibels. That shows that larger differences
may be seen by people with dedicated equalisers on a sound board or when using another piece of
software to equalise their sound.

Evaluation
My program accomplished most of what I expected technically that I needed in order to solve the
problem that I initially tried to investigate. Technical problems such as the recording of audio, the
processing of audio and display of a user interface that can get parts of the program running and
display information to the user.

After writing the program and setting up a system for my client to run it on; a computer with a
speaker and a microphone in a sort of podcast setting, I set out to get some feedback.

The positive raised by my client was:

 The user interface is not too clustered and they liked the use of the colours to make
it obvious on how to start the analysing.

 They could understand the messages displayed in the log box were enough to get an
idea of what the program is doing and an idea of how to troubleshoot expectedly
common problems. Such as mistakes in their input lists of frequencies.

 The program quick and snappy to run and complete a cycle of frequencies (the
processor and memory used by system the user tested on contained an AMD ‘fx
6300’ processor running at 3.5 GHz and the memory used was a configuration of 2x
‘HyperX Fury’ DDR3 4GB modules running at 1866MHz dual channel)

The feedback I got in order to improve on my program:

 The explanation of the different frequencies in the user interface is not very
extensive and is too hidden.

o Solution: Have a brightly coloured button in the user interface that opens a
pop up window with a more detailed and extensive guide on what different
range of frequencies sound like and what they mean in audio.

 It would be easier and quicker to understand and the graph of recorded frequencies
at a glance if it were plotted as a bar chart and not a line graph.

o Solution: Separate the visible frequencies in the graph and make the bar
chart with the highest amplitude being the top of the bar. Keep the bar
coloured to distinguish one frequency for another.

 For people that might need to keep volume under a threshold, if the graph plotted
had amplitude in terms of decibels rather than some random value

o Solution: use an algorithm that could give the amplitude of the fft signal in
decibels from the recording of the microphone.

 Reading the graph would also be easier if the labels were plotted directly on top of
the graph

o Solution: I could have done this using one of matplotlib’s functions to attach
the label to the top of the peak of the data for frequency played on the
graph which could be static or be shown when the user hovers over the
plotted data.

 Controlling the equaliser would be much more convenient on the computer if the
an equaliser could be put on the user interface itself rather than digging into
Microsoft’s Window’s audio settings to get to them

o Solution: to program an in built equaliser which has all computer data pass
through the program, or a more feasible solution being some button that
when clicked, has Window’s equaliser pop up.

Other problems could realistically be improved on or implemented are:

 Have the program scale to the resolution of the display to stay about one size and to not
loose text resolution when scaled up.

o Solution: I am not sure how to approach this problem at the moment but as far as I
know. it might require me to use another library to make a User interface with
rather than Tkinter

 The ability to filter or get rid of noise from other sources whilst the program is recording.

o Solution: Have a function which records the room whilst not playing any sounds,
gather the frequencies playing in the background and subtract their amplitudes from
the final displayed graph with the frequencies recorded.

 The ability to automatically recognise feedback loops and inform the user.

o Solution: check the 2 highest amplitudes when a frequency is played. Is the second
highest amplitude is not noise, has been played or is a harmonic of the frequency,
prompt the user that they might have a feedback loop

 The ability to recognise the sound profile of a given type of microphone to adjust and correct
the recorded audio data.

o Solution: Before starting the program, the user could either enter the sound profile
of their microphone as stated by the manufacturer on a slider if they know it which
would then adjust the amplitude values for the frequencies recorded or the user can
at least state the type of microphone they are using or, perhaps the manufacturer of
the microphone they are using (for example a condenser microphone from
Behringer) and some assumptions can be made about the sound profile that could
then be adjusted on the graph

 A safety feature that could stop the program after the reaching a maximum amplitude set by
the user

o Solution: The user could have a box where they can input their maximum amplitude
for a frequency in decibels and whilst the mic is recorded, the audio processing
could happen in real time and stop the program if the maximum volume set by the
user is reached.

My program for the most part covers the fundamentals of what it needs to do I could have
implemented more important features into the program if I did not spend a lot of time getting stuck
programming small features such as the auto-scroll in the log box within the user interface. Although
I did make an effort to stick to pep8 programming standards, I still did not plan the names I should
have used for functions and variables and I also have functions that do a lot of things that might be
unexplained which did cause difficulties in writing the code after periods of time between
programming sessions. If I were to start again, I would prioritise time in developing the important
parts of the program first and then plan my code out before jumping in writing. This would also save
me time from programming methods that I would change further down the line in development. I
used GitHub to record my progress and to save my repository so that I could develop my program
when I did not have access to my computer and to remind myself of things that have and have not
sorted out in my code. My Repository is at https://github.com/WhicheverCub05/CS-NEA.

