[image: C:\Users\Rob\Dropbox\PG Online\Logos and Artwork\ai_eps\Test.png]		Worksheet 4 Function application
Unit 12 OOP and functional programming

Worksheet 4 Function application
Task 1

1.	The process of giving particular inputs to a function is known as:

2. 	Without using a computer, think about the function
 		times x y z = x * y * z
	If we then define
		fiveDeep l w = times 5 l w
	What is returned by the following?
		fiveDeep 3 4

	
3. 	Create and load a file with the functions times and fiveDeep. What happens when you enter :type for each of these at the prompt? Why?

Task 2: map and filter

4.	Write down what you expect to the returned by the following. Use a calculator if you need to. Then test in Haskell.

	(a)	map (*5) [4,9,15]
	(b)	map sqrt [4,9,16,37]
	(c)	map sin [0,pi/4, pi/2]

5.	Create and save a file filter.hs to implement the function

 	isEven n = n `mod` 2 == 0

	(Hint: Use the backward quotes on the left of the 1 key on the keyboard to surround the mod operator.) Write your function below.
	

	Use map isEven to test it on a list of half a dozen integers. What is the result?

	What would you expect to happen if you tried an argument which is not an integer? Try it.

6.	Explore the use of filter (>"g") with a list of characters, e.g. ["A","B","a","b","h","n"]

What is output by the function?

Task 3

7.	Use a fold operation to find the sum of the elements in [1,2,3,4,5]

 	
8. 	Adapt your code from question 6 to find the factorial of 5, i.e. (5 x 4 x 3 x 2 x 1)

A useful data type in Haskell is an ordered pair, called a tuple. Some examples are:
(1,2), (5.8, True) and (“Helen”, 15)

9. 	Define a tuple t1 from any of these examples. Try out the built-in functions fst and snd on t1. The functions return the first and second elements respectively

10.	Define your own list of tuples, with a consistent type or pair of types. Write down the list, and the result of applying map fst or map snd to your list.

[bookmark: _GoBack]

11. Define a list of tuples of pairs of numbers. Use a fold function to calculate the sums of the first elements from every tuple.

12 	Write functional programming code in Haskell or another language, including type declarations, which takes a list of the first 100 integers and returns the odd numbers which are multiples of 3.

	Hint: the definition listN = [1..N] defines a list of all the integers between 1 and N.

3

image1.png

