[image: C:\Users\Rob\Dropbox\PG Online\Logos and Artwork\ai_eps\Test.png]		Worksheet 2: Structured programming
Unit 2 Problem solving
		

Worksheet 2 Structured programming

Task 1
1.	The following program is written as it would have been before the days of structured programming.
	It is designed to allow a user to input the times taken, to the nearest minute, by different people to complete a certain task. The program outputs the number of people who took
· more than 60 minutes
· between 30 and 59 minutes
· [bookmark: _GoBack]less than 30 minutes

	slow = 0
	medium = 0
	fast = 0
INPUTDATA
	timeTaken = USERINPUT
	IF timeTaken = 0 GOTO PRINT
	IF timeTaken < 30 GOTO UNDER30
	IF timeTaken <60 GOTO UNDER60
	slow = slow + 1
	GOTO INPUTDATA
UNDER30
	fast = fast + 1
	GOTO INPUTDATA
UNDER60
	medium = medium + 1
	GOTO INPUTDATA
PRINT
	OUTPUT fast, medium, slow	

(i)	Rewrite the programming using structured programming techniques.
(ii)	Flowcharts were invented in the days of GOTO statements. That is why they are not well-suited to representing iteration and selection structures. Can you draw a flowchart of the unstructured program?
(iii)	Which version of the program is
· quicker to write?
· easier to understand?
· less likely to contain errors?
(iv)	Another feature of some early programming languages was that no identifier (e.g. variable name or label) could be more than 6 characters. How would this affect program readability, ease of debugging and maintenance?

·

2.	(a)	MOD is an arithmetic operator which returns the remainder from integer division.
		e.g. x = 27 MOD 4 will put the value 3 in x.
		DIV returns the integer result of the division.
		e.g. y = 27 DIV 4 will put the value 6 in y.
		Write pseudocode statements to allow the user to input a 3-digit number, and then output the individual digits in the number.
		e.g. If the user enters 465, the output should be “The digits are 4 6 5”
	(b)	Devise a pseudocode algorithm which generates and prints all 3-digit numbers that equal the sum of the cubes of their individual digits.
		e.g. 153 satisfies this condition because 153 = 13 + 53 + 33
		(In pseudocode, express this as 1**3 + 5**3 + 3**3)

Task 2
3.	A hierarchy chart can be compared to an upside-down tree, with the root at the top and branches and leaves spreading downwards.
	The “leaves” are the lowest level modules and all or most of the detailed program code will be in the “leaves”.
	In the hierarchy chart below:
	(a)	Which are the Level 1 modules?
	(b)	Which are the Level 2 modules?
	(c)	Which are the Level 3 modules?
	(d)	Write down the order in which the modules are executed.
6
1
3
2
4
7
9
8
11
10
5

4.	The following pseudocode program is designed to allow the user to input a series of three numbers and for each set of numbers, find and output the maximum. The maximum is then added to a total. When the user enters 000 for the three numbers, the average of all the maximums is calculated and output.
SUB initialise
 OUTPUT “This program finds the maximums of sets of three numbers.
				Enter three zeroes when all numbers entered.
				Program then calculates and outputs the average of the maximums”
 total = 0
 n = 0
ENDSUB

SUB promptForNumbers
 OUTPUT"Please enter first number "
 num1 = USERINPUT
 OUTPUT ("Please enter second number "
 num2 = USERINPUT
 OUTPUT "Please enter third number "
 num3 = USERINPUT
ENDSUB

SUB findMax
 maxnum = num1
 IF num2>maxnum THEN
 maxnum = num2
 ELSE
		 IF num3>maxnum THEN
 maxnum = num3
	 ENDIF
 OUTPUT "Max of the three numbers is is ",maxnum
ENDSUB

SUB performCalculations
 total = total + maxnum
 n=n+1
ENDSUB

SUB processData
 promptForNumbers
 WHILE num1<>0 and num2<>0 and num3<>0
 findMax
 performCalculations
 promptForNumbers
 ENDWHILE
ENDSUB

SUB calculateAverage
 average = total/n
 OUTPUT "Average of maximums is ",average
ENDSUB

#Main program starts here
initialise
processData
calculateAverage

Draw a hierarchy chart representing this program. Show the different levels, i.e. Level 1 modules, Level 2 modules etc.
1

image1.png

1

Worksheet

2 Structured programming

Task 1

1.

The following program is written as it would have been before the days of structured

programming.

It is designed to allow a user to input the times taken, to the nearest minute, by different

people to complete a certain task. The program outputs the number of people who took

•

more than 60 minutes

•

between 30 and 59 minutes

•

less than 30 minutes

slow =

0

medium = 0

fast = 0

INPUTDATA

timeTaken = USERINPUT

IF timeTaken = 0 GOTO PRINT

IF timeTaken < 30 GOTO UNDER30

IF timeTaken <60 GOTO UNDER60

slow = slow + 1

GOTO INPUTDATA

UNDER30

fast = fast + 1

GOTO INPUTDATA

UNDER60

medium = medium + 1

GOTO INPUTDATA

PRINT

OUTPUT fast, medium, slow

(i)

Rewrite the programming using

structured programming techniques.

(ii)

Flowcharts were invented in the days of GOTO statements. That is why they are not

well

-

suited to representing iteration and selection structures. Can you draw a flowchart

of the unstructured program?

(iii)

Which version of the program is

•

quicker to write

?

•

easier to understand?

•

less likely to contain errors?

(iv)

Another feature of some early programming languages was that no identifier (e.g.

variable name or label) could be more than 6 characters. How would this affect

program readability, ease of debuggi

ng and maintenance?

 1 Worksheet 2 Structured programming Task 1 1. The following program is written as it would have been before the days of structured programming. It is designed to allow a user to input the times taken, to the nearest minute, by different people to complete a certain task. The program outputs the number of people who took • more than 60 minutes • between 30 and 59 minutes • less than 30 minutes slow = 0 medium = 0 fast = 0 INPUTDATA timeTaken = USERINPUT IF timeTaken = 0 GOTO PRINT IF timeTaken < 30 GOTO UNDER30 IF timeTaken <60 GOTO UNDER60 slow = slow + 1 GOTO INPUTDATA UNDER30 fast = fast + 1 GOTO INPUTDATA UNDER60 medium = medium + 1 GOTO INPUTDATA PRINT OUTPUT fast, medium, slow (i) Rewrite the programming using structured programming techniques. (ii) Flowcharts were invented in the days of GOTO statements. That is why they are not well - suited to representing iteration and selection structures. Can you draw a flowchart of the unstructured program? (iii) Which version of the program is • quicker to write ? • easier to understand? • less likely to contain errors? (iv) Another feature of some early programming languages was that no identifier (e.g. variable name or label) could be more than 6 characters. How would this affect program readability, ease of debuggi ng and maintenance?

