
©Rob Miles

Making Decisions

C# Programming

©Rob Miles

Writing Software

• It is important when you write software
that you ensure that you do it well

• A “good” program is not just one that
works – although this does of course help

• For a program to be properly useful it is
also important to ensure that it is well
written

7-Oct-13Making Decisions 2

©Rob Miles

Well Written Code

• Easy to read

– All the names in the text should add meaning

• Clean and consistent layout

– The same format for common constructions

• Well managed

– It should be clear who wrote the code and the
reasons for any changes

7-Oct-13Making Decisions 3

©Rob Miles

Comments

• One way to add a lot of value to a program
is to add comments

– We already do this with sensible variable
names, but comments allow even more detail

• A comment is something that the compiler
completely ignores

– It is only for use by the programmer

7-Oct-13Making Decisions 4

©Rob Miles

Creating a Comment

• The character sequence /* means the start

of a comment

• The sequence */ means the end of a

comment

7-Oct-13Making Decisions 5

/* This program works out the result by adding
two numbers together */

©Rob Miles

Line Comments

• The character sequence // starts a
comment that extends to the end of the
line

• You can use these to quickly explain what
a statement is doing

7-Oct-13Making Decisions 6

x= 0; // put the cursor at the left edge

©Rob Miles

Stupid Comments

• Comments should add value

• They should not just replicate information
that a programmer should know already

7-Oct-13Making Decisions 7

count = count + 1; // add 1 to count

©Rob Miles

Program Flow

• At the moment every program we have
written has just run through its statements
in sequence

• This form of linear program flow is not
always what you want

• The power of computer programs is that
they can make decisions

7-Oct-13Making Decisions 8

©Rob Miles

The Three Types of Flow

1. Straight line:

Perform one statement after another

2. Decision:

Choose a statement based on a given condition

3. Loop

Repeat statements based on a given condition

7-Oct-13Making Decisions 9

©Rob Miles

Conditional Execution - if

• The if statement lets a program react in a
particular way to data it receives

• This allows us to use metadata in our
programs to make them more effective

– The double glazing program could reject
widths and heights that are incorrect

– This will protect us from lawsuits..

7-Oct-13Making Decisions 10

©Rob Miles

Double Glazing Program

• We are going to consider a program we are
writing for a customer

– Read in height and width of window

– Print out area and length of glass to buy

• This is in the C# Yellow Book

• Before we can write the program we need
to go find some metadata

7-Oct-13Making Decisions 11

©Rob Miles

What is Metadata?

• Metadata is data about data

– Limits (maximum and minimum values)

– Units (measured in metres, gallons, years)

• It gives a proper context for what the
program is doing

• There is always a question about metadata
in the 08101 examination

7-Oct-13Making Decisions 12

©Rob Miles

Where does Metadata come from?

• It must come from the customer

– They are the only people who can tell you
about their business

• Only the double glazing salesman knows
that he measure his windows in meters

• If you assume that he uses feet and inches
you will supply a useless program

7-Oct-13Making Decisions 13

©Rob Miles

Getting Metadata

• You need to go out and ask the customer
for this information

• They will not necessarily think to tell you

• Two assumptions that lead to disaster
– Customer assumes you know the units

– You assume the customer measures his
windows in feet

• Result = FAIL

7-Oct-13Making Decisions 14

©Rob Miles

Double Glazing Metadata

• This is the metadata that drives our value
inputs for the double glazing program

• I have written it as a comment
– This is not accidental

7-Oct-13Making Decisions 15

/* Window sizes measured in meters
Invalid values:
width less than 0.5 metres
width greater than 5.0 metres
height less than 0.75 metres
height greater than 3.0 metres */

©Rob Miles

Conditional Statement

• This is the general form of the C#
conditional statement

• The condition is an expression that returns
a boolean result

7-Oct-13Making Decisions 16

if (condition)
statement we do if condition is true

else
statement we do if condition is false

©Rob Miles

Relational Operators

• We have seen how a operators can be used in
arithmetic expressions to produce numeric
results

• We can use relational operators in
expressions to produce boolean results which
are true or false

7-Oct-13Making Decisions 17

height > 3.0

2 * (width + height) * 3.25

©Rob Miles

Testing the height upper limit

• This C# test validates the upper bound of
the height value

• Note that it doesn’t check for heights
which are to small or negative

7-Oct-13Making Decisions 18

if (height > 3.0)
Console.WriteLine ("too high");

else
Console.WriteLine ("not too high");

©Rob Miles

Missing off the else part

• If you don’t need the else part you can
leave it out

• Whether you have an else part depends on
what you are trying to achieve with the
code

– Don’t feel obliged to add one

7-Oct-13Making Decisions 19

if (height > 3.0)
Console.WriteLine ("too high");

©Rob Miles

Relational Operators

• You use relational operators to perform
comparisons

• A relational operator works between two
numeric operands

• It returns a boolean result which is either
true or false

7-Oct-13Making Decisions 20

©Rob Miles

== operator

• The == operator returns true if the two

operands are equal

• Note that this is not the same as the =

operator, which performs assignment

7-Oct-13Making Decisions 21

if (age == 21)
Console.WriteLine ("Happy 21st");

©Rob Miles

== operator and Floating Point

• Because floating point values can’t be held
exactly it is very dangerous to compare
them for equality

• The condition may be unreliable because
of errors in calculation

7-Oct-13Making Decisions 22

if (average == 1.0f)
Console.WriteLine ("Average of 1");

©Rob Miles

== operator and strings

• We can compare strings for equality

• The comparison is case sensitive

– The string "rob" would not be recognised by

the above code

7-Oct-13Making Decisions 23

if (name == "Rob")
Console.WriteLine ("Hello Rob");

©Rob Miles

The != operator

• The != (not equals) operator returns true if
the operands are not equal to each other

• This can be used in the same way as the
== operator

7-Oct-13Making Decisions 24

if (name != "Rob")
Console.WriteLine ("Your are not Rob");

©Rob Miles

The < and > operators

• The < and > operators test for less-than
and greater-than respectively

• Note that if the operands are equal the
result is not true

7-Oct-13Making Decisions 25

if (width < 0.5)
Console.WriteLine ("width too low");

©Rob Miles

The <= and >= operators

• These work like < and >, but also include
the case where the two are equal

• To invert a < you have to use a >=

• The code above inverts the previous test

7-Oct-13Making Decisions 26

if (width >= 0.5)
Console.WriteLine ("not too low");

©Rob Miles

The ! operator

• The ! operator (not) can be used to invert a
boolean value

• It works on one operand

7-Oct-13Making Decisions 27

if (!false)
Console.WriteLine ("not false is true");

©Rob Miles

Combining Logical Operators

• Sometimes a program needs to combine a
number of logical expressions
– If the height is too wide or the height is too

high

• C# provides operators that can be used in
this way:
– && for logical and

– || for logical or

7-Oct-13Making Decisions 28

©Rob Miles

Testing both height limits

• The Logical Operator OR || can be used

to combine two conditions

• If one or other of the conditions is true the
operator will return true

7-Oct-13Making Decisions 29

if ((height > 3.0) || (height < 0.5))
Console.WriteLine ("Invalid Height");

else
Console.WriteLine ("Height OK");

©Rob Miles

Inverting the Condition

• This test inverts the condition to return
true if the height is valid

• Note we have to invert the conditions and
change the logical operator

7-Oct-13Making Decisions 30

if ((height <= 3.0) && (height >= 0.5))
Console.WriteLine ("Height OK");

else
Console.WriteLine ("Invalid Height");

©Rob Miles

Creating Blocks

• If we want to perform more than one
statement after a condition we can put the
statements into a block

7-Oct-13Making Decisions 31

if (width > 5.0)
{

Console.WriteLine ("Width restricted") ;
width = 5.0 ;

}

©Rob Miles

Code Blocks

• We have seen blocks before

– The body of a method is a block

• The { and } define the limits (delimit) a

block of statements

7-Oct-13Making Decisions 32

{
/* any number of statements

here */
}

©Rob Miles

Blocks and Layout

• I indent code which is inside a new block
• This makes the program much easier to

understand
• I often use blocks when I just have one

statement

7-Oct-13Making Decisions 33

if (width > 5.0)
{

Console.WriteLine ("Width restricted") ;
width = 5.0 ;

}

©Rob Miles

Magic Numbers

• The value 5.0 is a magic number

• It actually means “the largest width you
are allowed to have”

• But this is not very clear to a reader

7-Oct-13Making Decisions 34

if (width > 5.0)
{

Console.WriteLine ("Width restricted") ;
width = 5.0 ;

}

©Rob Miles

Magic Numbers

• We can create a variable which contains
the maximum width value

• If we use this it makes the code much
clearer

7-Oct-13Making Decisions 35

if (width > MAX_WIDTH)
{

Console.WriteLine ("Width restricted") ;
width = MAX_WIDTH ;

}

©Rob Miles

Declaring Magic Numbers

• By adding const in front of the declaration
we can make a variable that is constant

• This stops other programmers from
changing the value and making the
program misbehave

7-Oct-13Making Decisions 36

const double MAX_WIDTH = 5.0 ;

©Rob Miles

Magic Number Double Bonus

• Not only do magic number variables make
the program clearer, but they also make it
simpler to maintain

• If the customer wants us to change the
maximum window width it is now very
easy to do this, just by changing the magic
number declaration

7-Oct-13Making Decisions 37

©Rob Miles

Summary

• Well written code contains comments

• Successful programs are based on Metadata

• Programs can make decisions using
conditional statements

• Programs can use relational operators to
compare values

• Logical expressions can be combined to
create more complex decisions

7-Oct-13 38Making Decisions

©Rob Miles

Labs this Week

• The labs this week are very similar to the
ones you did last week

• Except that we will be writing programs
that make decisions

• The starting points are very similar to the
programs we have already written

• But when the code runs it makes a choice

7-Oct-13Making Decisions 39

