ey Hull

=

o

>

=

7
4
=
=

-

Creating Loops

C# Programming

TR\
UNIVERSITY OF Hllll

What we can do so far

 Store data (using variables)
* Change data (using assignments)
» Make decisions (using conditions)

e There i1s not much more that we need to
know how to do

— But we do need to know how to create loops

TR\
UNIVERSITY OF Hllll

Loops

» We create a loop so that we can repeat one
Oor more statements

* A condition is used to determine whether
or not the loop stops

* The condition is either true or false, just
like that used in an if construction

gg*kﬂul]

UNIVERSITY OF

A Stupid Loop

» We can write never ending loops if we like:

do
Console.WritelLine ("Har har");
while (true);

* This loop will never finish (use CTRL+C to
kill a program if it does this..

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 4

gg*kﬂul]

UNIVERSITY OF

The do — while loop

e do-while continues while the condition is true

int 1 = 0;

do A
Console.WritelLine (i);
i =1+ 1;

} while (1 < 4);

* We can use a block to get more than one
statement repeated

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 5

Another Stupid Loop

TR\
UNIVERSITY OF Hl.lll

» We can write “non loops” if we like:

do

wh

Console.WritelLine ("Har har");
ile (false);

* In this case the loop will not repeat, but it
will execute once as the test is at the end

« Remember that statements are executed in
sequence

TR\
UNIVERSITY OF Hllll

Doing the test at the end of the loop

 In the do — while loop the test to see if the
loop continues is performed after the
statements in the loop have been
performed

 This 1s useful if you want the code to do
something and then check the result

— For example if you were reading numbers in
from a user..

TR\
UNIVERSITY OF Hl.'lll

Reading in Numbers

do A
Console.Write("Enter width:");
widthString = Console.ReadlLine();
width = double.Parse(widthString);
} while ((width<@) || (width>3.9));

 This will repeatedly read the width value
until a valid one is entered

« Make sure you test with invalid values too

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 8

TR\
UNIVERSITY OF Hllll

Doing the test first

« Sometimes you want to do the test before
you perform the loop code

 There i1s a C# construction for this too:

while (false)
Console.WriteLine("Never Printed");

» Note that the word do 1s not required
* Note that the statement could be a block

TR\
UNIVERSITY OF Hllll

For loops

* We have already seen how we can create
code which will repeat something a
particular number of times

 However, since this is something that we
need to do a lot, C# provides a special
constructions for this, the for loop

gg*kﬂul]

UNIVERSITY OF

The For loop

 The for loop has the following form:

for (setup ; finish test ; update) {
// things we want to do a given
// number of times

» The setup, finish test, and update are
added to get the loop that we want

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 11

CTOEdN

untversrry or Hull
A working For Loop
int 1 ;
for (1 =1 ;1< 11 ; i = i+1)
{

Console.WritelLine ("Hello") ;

}

 This will print out Hello 10 times

* When the value in i reaches 11 the loop
stops

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 12

TN

unverstry o Hull
A stupid For Loop
int 1 ;
for (1 =0 ; 1i<11 ; 1 =1-1)
{

Console.WritelLine ("Hello") ;

}

» This will print out Hello for ever because
the control variable is updated in the
wrong direction

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 13

TR TN
UNIVERSITY OF

Another stupid For Loop

Hull

int 1 ;
for (1 =0 ; 1< 11 ; 1 = i+l)
{
Console.WritelLine ("Hello") ;
i = 0;
}

» This will print out Hello for ever because
the control variable is reset in the code
inside the loop

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles

14

TR\
UNIVERSITY OF Hl.'lll

Breaking out

int 1 ;

for (1 =0 ; 1< 11 ; 1 = i+1)

{
Console.WriteLine ("Hello") ;
if (i==3) break;

¥

* The break keyword lets us escape from any loop
* You can use it in do-while, while and for loops

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 15

TN

untversrry or Hull
Continuing
int 1 ;
for (1 =0 ; 1< 11 ; i = i+1)
{

Console.WriteLine ("Hello") ;
if (1==3) continue;
Console.WriteLine ("Not 3") ;

}

* The continue keyword takes us back to the
"top" of any loop

Chapter 6.2 : Loops 11-Oct-13 ©Rob Miles 16

TR\
UNIVERSITY OF Hllll

Summary

« We now have the three fundamental loop
constructions

 The trick with programming is to use the
construction which is appropriate to the
task in hand

* You can make the code work with any loop
design

