での主命へ University of Hull	C# Programming Data and Types	
		©Rob Miles

Data in Programs

- Programs are made up of data and operations that work on that data
- C# programs contain *variables* that hold the data to be processed
- The program must declare each variable before it is used
- Variables are of a particular data type

Data and Types 1-Nov-13 ©Rob Miles 2

UNIVERSITY OF Hull

Declaring variables

```
...
static void Main()
{
    double width, height, woodLength, glassArea;
    string widthString, heightString;
...
```

- A variable is a place you can store things
- · You can think of it as a box with a name

Chapter 4: A First C# Program 1-Nov-13 ©Rob Miles

Variables

- · Boxes to put things in
- · Hold items of a particular type
 - The type of the box determines what you can put in it
 integer, double, float, string
- Converting between different types is not always automatic
 - We have to explicitly convert between string and double
- You choose the **identifier** for your variables

Chapter 4: A First C# Program 1-Nov-13 ©Rob Miles

UNIVERSITY OF Hull

Identifiers

- A string of text you use to identify something that you have created
 - Starts with a letter or _
 - Contains letters, numbers and _ characters:Fred Height99 The_Score theScore
- The identifier should reflect what the variable is being used for:

width and height

 ${\it Chapter 4: A First C\# Program} \qquad \hbox{1-Nov-13} \qquad \textcircled{\mathbb{R} Rob Miles}$

UNIVERSITY OF Hull

Variable Types

```
...
static void Main()
{
    double width, height, woodLength, glassArea;
    string widthString, heightString;
...
```

- The program stores numbers for the input values and output values
- · It also stores the strings entered by the user

Chapter 4: A First C# Program 1-Nov-13 ©Rob Miles

Variables and Type

- The *type* of a variable determines what a program can store in it
- The C# language is *strongly typed* in that the compiler will prevent you from combining data types ways it things are wrong
- This is to make programs more reliable

Data and Types 1-Nov-13 ©Rob Miles

UNIVERSITY OF Hull

Data and Types 1-Nov-13 ©Rob Miles

UNIVERSITY OF Hull

Integer values Stuff Char string C# provides a number of different integer types

UNIVERSITY OF Hull

Using Integers

- If you have no need to store fractions, you should use integers
- Computers can manipulate integers more quickly than floating point
 - This is particularly true for smaller devices
- Even things that you think should be real numbers can often be integer
 - The price of something can be stored in pence

Data and Types 1-Nov-13 ©Rob Miles 11

UNIVERSITY OF Hull

Storing Integer Values

- · Integer values are held exactly
 - i.e. the pattern of bits held in computer memory exactly matches the integer value it is supposed to represent
- The more bits that are used to hold an integer value, the greater the range
- Integers use "2's complement" notation to hold negative numbers

C# Integer Variable Types

sbyte	8 bits	-128 to 127
byte	8 bits	0 to 255
short	16 bits	-32768 to 32767
ushort	16 bits	0 to 65535
int	32 bits	-2147483648 to 2147483647
uint	32 bits	0 to 4294967295
long	64 bits	-9223372036854775808 to 9223372036854775807
ulong	64 bits	0 to 18446744073709551615
char	16 bits	0 to 65535

- These are the integer types provided by C#
- Note that the unsigned types do not store negative numbers

Data and Types 1-Nov-13 ©Rob Miles 13

UNIVERSITY OF Hull

Integer "literals" in C#

```
int i;
i = 99;
byte b;
b = 100;
```

- A "literal" is a value in the program that is literally "just there"
- In C# program a integer literal value is given with no decimal point

Data and Types 1-Nov-13 ©Rob Miles 14

UNIVERSITY OF Hull

Using Real Numbers	
 Real numbers are used when you need a fractional part Working out averages 	
 Any kind of real world calculations C# provides a range of real number types which have different range and precision 	
which have different range and precisionYou choose the one that fits the problem	
Data and Types 1-Nov-13 ©Rob Miles 16	
▽@☆☆~ Hull University of Hull	
Range and Precision	
• Floating point values are held in C# to a particular range and precision	
 Range: the biggest and smallest numbers I can store Precision: the number of digits of accuracy 	
available • Each type has a particular range and	
precision	
Data and Types 1-Nov-13 ©Rob Miles 17	
▽@☆☆~ Hull University of Hull	
Storing Real Numbers	
 Real numbers are held as "binary fractions" The value 3/4 would be represented as: 	
 "a half plus a quarter" This means that the value 0.1 (a tenth) 	
cannot be represented exactly on a computer in this way	

• Instead we use enough bits to ensure that values are held sufficiently accurately

UNIVERSITY OF Hull

C# Real Variable Types

float	32 bits	±1.5 × 10-45 to ±3.4 × 10 ³⁸
		7 digits of precision
double	64 bits	±5.0 × 10-324 to ±1.7 × 10308
		15 digits of precision
decimal	128 bits	±1.0 × 10-28 to ±7.9 × 1028
		28 digits of precision

- These are the real types provided by C#
- decimal is provided for use in high precision finance calculations

Data and Types 1-Nov-13 ©Rob Miles 19

UNIVERSITY OF Hull

Float "literals" in C#

```
double d;
d = 0.1;
float f;
f = 0.1f;
```

- A literal floating point value is always treated as if it was of double type by the compiler
- To create a literal value of type **float** you have to add an f on the end of the literal value

Data and Types 1-Nov-13 ©Rob Miles 2

UNIVERSITY OF Hull

Float "literals" in C#

```
double d;
d = 0.1;
float f;
f = 0.1f;
```

- If you leave out the f in the above code the program will fail to compile
- The compiler will not let a program put a value into a variable if it thinks the type might not be able to hold it correctly

Text

Stuff

C# provides two types for holding text

Integers

Integers

Real

Carrier of the control of the co

UNIVERSITY OF Hull

UNIVERSITY OF Hull

Using Characters

- You use a char type if you want to store a single character
- It can be a letter, digit, punctuation character, control character or space
- This character will be held as a single value using the UNICODE standard

UNIVERSITY OF Hull **Character Codes** • Computers store everything as patterns of bits · For a computer to store text we have to map these patterns to particular characters • C# uses the UNICODE standard to perform this mapping UNIVERSITY OF Hull The UNICODE Standard · UNICODE is a standard for characters • Each character is stored in a 16 bit value • This allows for over 64,000 characters · You may have heard of an 8 bit code called **ASCII** · The ASCII character set is mapped onto the first 128 values of UNICODE Data and Types 1-Nov-13 ©Rob Miles 26 UNIVERSITY OF Hull Character literal values

char commandKey;
commandKey = 'A';

- A character literal value is written in the program enclosed in single quotes
- This is how the compiler can tell which is the character to be used
- · Upper and lower case characters are different

Control Codes

- Some characters are not printed on the screen, but instead have a control behaviour
 - Carriage return
 - Take a new line
 - Sound an alert
 - Tab
- C# uses *escape sequences* to allow a program to use these codes

Data and Types 1-Nov-13 ©Rob Miles 28

UNIVERSITY OF Hull

Escape Sequence

```
char newLine;
newLine = '\n';
```

- The escape sequence is the backslash (\) character followed by a letter that identifies the required control character
- Letter n means "newline"

Data and Types 1-Nov-13 ©Rob Miles 29

UNIVERSITY OF Hull

Escape Sequence Values

Character	Escape Sequence name
\'	Single quote
\"	Double quote
//	Backslash
\0	Null
\a	Alert
\b	Backspace
\f	Form feed
\n	New line
\r	Carriage return
\t	Horizontal tab
\v	Vertical quote

Strings of Characters Stuff Char String Integers Real The string type can hold many characters int long float double

UNIVERSITY OF Hull

UNIVERSITY OF Hull

Using Strings

- You can use a string everywhere you need to store some text:
 - Names
 - Addresses
 - The book "War and Peace"
- · Strings can get very long indeed
- They also provide a bunch of useful text behaviours

Data and Types 1-Nov-13 ©Rob Miles ;

UNIVERSITY OF Hull

Storing Strings

- There is only one string type
- String storage is managed automatically by the C# runtime system
- A storage area of the right size is created for each string that is stored
- You don't need to worry about reserving memory for strings or releasing it when you have finished

String literal values

```
string name;
name = "Rob Miles";
```

- A string literal is enclosed in double quotes
- You can put escape sequences in the string as well – they must be preceded by the \ character as used in chars

Data and Types 1-Nov-13 ©Rob Miles 34

UNIVERSITY OF Hull

Verbatim String literal values

```
string backslash;
backslash = @"A backslash : \";
```

- If you don't want to use escape sequences in your string literal you can put an @ in front of it
- This means the string is used verbatim

Data and Types 1-Nov-13 ©Rob Miles 35

UNIVERSITY OF Hull

Multi-Line Verbatim Strings

```
string address;
address = @"University of Hull
Cottingham Road
Hull";
```

- A verbatim string can spread over several lines
- · The line breaks are preserved

での含ます Hu University of Hu		
Taking newlines in strings		
Console.WriteLine("Hello\nWorld");		
Hello World		
The newline character in a string will cause a new line to be taken at that point		
Data and Times 1-Nov-12 @Rob Miles 27		

Storing State Stuff Text Numbers State The bool type does not hold a value as such Instead it holds a state which is either true or false

University of Hull

Storing State

- Some things that are to be stored are not values as such, but instead are *states*
 - "is a member of the club"
 - "input is valid"
 - "network OK"
- C# provides a bool type which is used to hold the states true or false

The bool type

- The bool type can only hold two possible values
 - true or false
- These could be held by a single bit in the computer memory
 - This is not usually how it is done however, as such a value would be hard to address

Data and Types 1-Nov-13 ©Rob Miles 40

UNIVERSITY OF Hull

Bool literal values

bool ageIsValid;
ageIsValid = true;

- Variables of the bool type can be set to the values true or false and nothing else
- They can be used directly in conditions, as we shall see later

Data and Types 1-Nov-13 ©Rob Miles 41

UNIVERSITY OF Hull

Choosing a Variable Type

- · Price of an ice cream
- The possible types are:

 sbyte hold an integer from -127 to +128

 byte hold an integer from 0 to 255

 short hold an integer from + or 32,000

 int hold an integer + or 2,000,000,000

 float hold a real with 7 digit precision

 double hold a real with 15 digit precision
- · Which would you choose?

ウ色主中 N UNIVERSITY OF Hull
Ice Cream Price
 I'd use int or short Although it will be priced in pounds and pence (e.g. 1.20) I don't want to use a real number since these are not what they are for
• An ice cream could cost more than 2.55 and so it has to be short or int
Data and Types 1-Nov-13 ©Rob Miles 43
学の生金を University of Hull
Choosing Another Variable
 Speed of a car in MPH The possible types are: sbyte - hold an integer from -127 to +128 byte - hold an integer from 0 to 255 short - hold an integer from + or - 32,000 int - hold an integer + or - 2,000,000,000 float - hold a real with 7 digit precision
double – hold a real with 15 digit precisionWhich would you choose?
Data and Types 1-Nor-13 ©Rob Miles 44 **********************************
Speed of a Car

- $\bullet\,$ This depends on the accuracy of the sensor and the way the result is to be displayed
 - sbyte is no good because the range is too small
 - byte is no good because you can't go backwards
- You can make a good case for just about any of the others

University of Hull	
Identifiers	
 Each item we create in a program must have an identifier (or name) We decide what the identifier is: 	
The identifier of an item must	
reflect what the item is to be	
used for.	
Duta and Types 1-Nov-13 ©Rob Miles 46	
ウのません University of Hull	
C# Identifier Rules	
Used in the program use to identify something that you have created	
Can only contain letters, digits and the underscore (_) characterMust start with a letter or underscore (_)	
Width HeightString 99ImIllegal so\$am\$I	
 The case is significant: Fred is a different identifier from fred 	
Data and Types 1-Nov-13 @Rob Miles 47	
# But the second	
サル University of Hull	
Summary	
 Programs work by operating on data The data is stored in <i>variables</i> which are	
of a particular data <i>type</i> • The type of a variable determines what you	
can put into itThe programmer must select appropriate	
data types and create appropriate identifiers for variables in a program	