
©Rob Miles

Enumerated Types

C# Programming
Enumerated Types

08/11/2013

©Rob Miles08/11/2013

Enumerated Types

• A way to "design your own data"

• Rather than deciding what kinds of things
that we want to store, for an enumerated
type we can decide what values our
variable can store

• These are actually held by C# as numbers,
but it enumerates the possible values that
we invent – hence the name

©Rob Miles08/11/2013

Cricket and enumerated types

• We might want to store how a batsman
was taken out of a game of cricket:
– Bowled out
– Run out
– Caught
– Not out
– Leg before wicket

• We could use an integer, but it makes
much more sense to use an enum:

©Rob Miles08/11/2013

Example enum type

• This sets out all the values that the type
may have (these are all the reasons you
can be out in cricket)

enum OutReason {
bowledOut,
runOut,
caught,
notOut,
legBeforeWicket

}

©Rob Miles08/11/2013

Creating a enum variable

• We can now use our new type to create a
variable that holds the reason why the
player was out:

• The variable reason is of type OutReason

• We can only set this variable to the values
that we have allowed in the type

OutReason reason;
reason = OutReason.bowledOut;

©Rob Miles08/11/2013

Literal values of type OutReason

• Literal values of the enum are given by
using the type name, followed by the
particular value

if (reason == OutReason.bowledOut)
{

Console.WriteLine ("Bowled out");

}

©Rob Miles08/11/2013

enums as numeric values

• You can perform assignment with
enumerated types

• But you cannot perform arithmetic as it
would be meaningless

• If you are feeling brave you can use casting
to get at the numbers which represent the
type values
– But only do this if you know what you are
doing….

©Rob Miles08/11/2013 8

Cricket and enumerated types

• We might want to store how our batsman
was taken out of the game:
– Bowled out
– Run out
– Caught
– Not out
– Leg before wicket

• We could use an integer, but it makes
much more sense to use an enum:

Structures

©Rob Miles08/11/2013 9

Enums in structures

• Enumerated types are very useful in
structures:

• We now store the reason why the player was
out

struct Player {
public string Name;
public int Score;
public OutReason Reason;

}

Structures

©Rob Miles08/11/2013

Enum input/output

• Unfortunately we have to do extra work
when we read in or print out our enum
values

• Our code will have to get the information
from the user and set the appropriate
value

• It will also have to decide what to print

©Rob Miles08/11/2013

Making life easier – the switch

• Fortunately C# has a construction which
can help

• It is the switch construction

• It lets us write code which picks a
particular action based on a value

• We can use a switch on our enumerated
type

©Rob Miles08/11/2013

Output with switch

• This switch prints a message which
describes the contents of reason

switch (reason) {
case OutReason.caught:

Console.WriteLine ("Caught");
break;

case OutReason.notOut :
Console.WriteLine ("Not out");
break;

}

©Rob Miles08/11/2013

Input with switch
switch (reasonString) {
case "caught":

reason = OutReason.caught;
break;

case "not out" :
reason = OutReason.notOut;
break;

default :
Console.WriteLine ("Error");
break;

}

©Rob Miles08/11/2013

Summary

• You can use the enum feature to add new
types to your programs

• Once you have the new type you can
declare values of that type

• A value of an enum type can only occupy
one of the values given

